资源类型

期刊论文 983

会议视频 20

年份

2024 1

2023 87

2022 92

2021 93

2020 66

2019 76

2018 57

2017 66

2016 43

2015 38

2014 43

2013 41

2012 26

2011 40

2010 33

2009 46

2008 39

2007 37

2006 15

2005 8

展开 ︾

关键词

燃料电池 7

固体氧化物燃料电池 5

城镇建设 4

人工智能 3

SOFC 2

临床试验 2

产业发展 2

催化剂 2

元胞自动机模型 2

干细胞 2

性能化 2

效果评估 2

氢燃料电池 2

氢能 2

目标识别 2

组织工程 2

高压 2

2022全球工程前沿 1

2035 1

展开 ︾

检索范围:

排序: 展示方式:

Cell surface protein engineering for high-performance whole-cell catalysts

Hajime Nakatani,Katsutoshi Hori

《化学科学与工程前沿(英文)》 2017年 第11卷 第1期   页码 46-57 doi: 10.1007/s11705-017-1609-3

摘要: Cell surface protein engineering facilitated by accumulation of information on genome and protein structure involves heterologous production and modification of cell surface proteins using genetic engineering, and is important for the development of high-performance whole-cell catalysts. In this field, cell surface display is a major technology by exposing target proteins, such as enzymes, on the cell surface using a carrier protein. The target proteins are fused to the carrier proteins that transport and tether them to the cell surface, as well as to a secretion signal. This paper reviews cell surface display systems for prokaryotic and eukaryotic cells from the perspective of carrier proteins, which determine the number of displayed molecules, and the localization, size, and direction ( or terminal anchoring) of the passengers. We also discuss advanced methods for displaying multiple enzymes and a new method for the immobilization of whole-cell catalysts using adhesive surface proteins.

关键词: cell surface engineering     surface display     whole-cell catalysts     bioprocess    

A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC

Souman RUDRA, H. T. KIM, Jinwook LEE, L. ROSENDAHL,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 402-413 doi: 10.1007/s11708-010-0122-x

摘要: Solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur-free syngas from a gas-cleaning unit serves as fuel for SOFC in integrated gasification fuel cell (IGFC) power plants. It converts the chemical energy of fuel gas directly into electric energy, thus high efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam turbine efficiency was calculated for measuring the total power plant output. The aim of this paper is to provide a simulation model for the optimal selection of the operative parameters of HRSG and SOFC for the IGFC system by comparing it with other models. The simulation model should be flexible enough for use in future development and capable of predicting system performance under various operating conditions.

关键词: SOFC     HRSG     IGFC     syngas    

Performance comparison of cocurrent and countercurrent flow solid oxide fuel cells

Huisheng ZHANG, Shilie WENG, Ming SU

《能源前沿(英文)》 2011年 第5卷 第2期   页码 207-213 doi: 10.1007/s11708-011-0151-0

摘要: Solid oxide fuel cell (SOFC) is a complicated system with heat and mass transfer as well as electrochemical reactions. The flowing configuration of fuel and oxidants in the fuel cell will greatly affect the performance of the fuel cell stack. Based on the developed mathematical model of direct internal reforming SOFC, this paper established a distributed parameters simulation model for cocurrent and countercurrent types of SOFC based on the volume-resistance characteristic modeling method. The steady-state distribution characteristics and dynamic performances were compared and were analyzed for cocurrent and countercurrent types of SOFCs. The results indicate that the cocurrent configuration of SOFC is more suitable with regard to performance and safety.

关键词: solid oxide fuel cell (SOFC)     cocurrent     countercurrent     dynamic performance    

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 334-364 doi: 10.1007/s11708-017-0490-6

摘要: Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.

关键词: polymer electrolyte fuel cell     ultra-thin catalyst layer     electrostatic interactions     characterization and modeling     structure-property-performance relation     water management    

车用燃料电池电堆比功率提升的技术途径探讨

侯明,邵志刚,衣宝廉

《中国工程科学》 2019年 第21卷 第3期   页码 84-91 doi: 10.15302/J-SSCAE-2019.03.002

摘要:

燃料电池车作为新能源汽车的一种,以其续驶里程长、动力性能高、燃料加注快、兼容可再生能源等特点,得到愈来愈广泛的重视。燃料电池堆是燃料电池汽车的核心,其比功率是反应燃料电池堆技术水平的重要指标,掌握高比功率燃料电池电堆技术可以降低电堆硬件数量,从而也会使电堆成本得到大幅降低。国际上先进的燃料电池堆由于具有高的比功率使其在车辆有限空间能提供较大功率,满足了车辆动力需求;然而,国内目前电堆比功率相比国际先进水平还有一定差距,针对这一问题,本文从高活性催化剂、增强复合质子交换膜、高扰动流场、导电耐腐蚀薄金属双极板、电堆组装与一致性等多方面,探讨了提高燃料电池电堆比功率的技术途径,基于理论与实践积累分析了燃料电池活化极化、欧姆极化及传质极化与材料、部件、组装的关联性,为进一步提高燃料电池堆性能与比功率提供方向性参考。

关键词: 燃料电池车     燃料电池电堆     性能     比功率    

Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell

Alireza AHMADIAN YAZDI, Jie XU

《能源前沿(英文)》 2018年 第12卷 第2期   页码 233-238 doi: 10.1007/s11708-018-0529-3

摘要: Heteroatom-doping of pristine graphene is an effective route for tailoring new characteristics in terms of catalytic performance which opens up potentials for new applications in energy conversion and storage devices. Nitrogen-doped graphene (N-graphene), for instance, has shown excellent performance in many electrochemical systems involving oxygen reduction reaction (ORR), and more recently glucose oxidation. Owing to the excellent sensitivity of N-graphene, the development of highly sensitive and fast-response enzymatic biosensors is made possible. However, a question that needs to be addressed is whether or not improving the anodic response to glucose detection leads to a higher overall performance of enzymatic biofuel cell (eBFC). Thus, here we first synthesized N-graphene via a catalyst-free single-step thermal process, and made use of it as the biocatalyst support in a membraneless eBFC to identify its role in altering the performance characteristics. Our findings demonstrate that the electron accepting nitrogen sites in the graphene structure enhances the electron transfer efficiency between the mediator (redox polymer), redox active site of the enzymes, and electrode surface. Moreover, the best performance in terms of power output and current density of eBFCs was observed when the bioanode was modified with highly doped N-graphene.

关键词: enzymatic fuel cell     nitrogen-doped graphene     reduced graphene oxide     catalyst-free synthesis    

Influence of using amorphous silicon stack as front heterojunction structure on performance of interdigitatedback contact-heterojunction solar cell (IBC-HJ)

Rui JIA,Ke TAO,Qiang LI,Xiaowan DAI,Hengchao SUN,Yun SUN,Zhi JIN,Xinyu LIU

《能源前沿(英文)》 2017年 第11卷 第1期   页码 96-104 doi: 10.1007/s11708-016-0434-6

摘要: Interdigitated back contact-heterojunction (IBC-HJ) solar cells can have a conversion efficiency of over 25%. However, the front surface passivation and structure have a great influence on the properties of the IBC-HJ solar cell. In this paper, detailed numerical simulations have been performed to investigate the potential of front surface field (FSF) offered by stack of n-type doped and intrinsic amorphous silicon (a-Si) layers on the front surface of IBC-HJ solar cells. Simulations results clearly indicate that the electric field of FSF should be strong enough to repel minority carries and cumulate major carriers near the front surface. However, the over-strong electric field tends to drive electrons into a-Si layer, leading to severe recombination loss. The n-type doped amorphous silicon (n-a-Si) layer has been optimized in terms of doping level and thickness. The optimized intrinsic amorphous silicon (i-a-Si) layer should be as thin as possible with an energy band gap ( ) larger than 1.4 eV. In addition, the simulations concerning interface defects strongly suggest that FSF is essential when the front surface is not passivated perfectly. Without FSF, the IBC-HJ solar cells may become more sensitive to interface defect density.

关键词: amorphous silicon     front surface field     simulations     interdigitated back contact-heterojunction solar cells    

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

T.S. Zhao, Y.S. Li, S.Y. Shen

《能源前沿(英文)》 2010年 第4卷 第4期   页码 443-458 doi: 10.1007/s11708-010-0127-5

摘要: Direct ethanol fuel cells (DEFCs) are a promising carbon-neutral and sustainable power source for portable, mobile, and stationary applications. However, conventional DEFCs that use acid proton-exchange membranes (typically Nafion type) and platinum-based catalysts exhibit low performance (i.e., the state-of-the-art peak power density is 79.5 mW/cm at 90°C). Anion-exchange membrane (AEM) DEFCs that use low-cost AEM and non-platinum catalysts have recently been demonstrated to yield a much better performance (i.e., the state-of-the-art peak power density is 160 mW/cm at 80°C). This paper provides a comprehensive review of past research on the development of AEM DEFCs, including the aspects of catalysts, AEMs, and single-cell design and performance. Current and future research challenges are identified along with potential strategies to overcome them.

关键词: fuel cell     direct ethanol fuel cells     anion-exchange membrane     ethanol oxidation reaction     oxygen reduction reaction     cell performance    

Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance

Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1049-4

摘要:

OsMFC can simultaneously recover electricity and water from wastewater.

Membrane fouling played an important role in flux decline of FO membrane in OsMFCs.

Biofouling was the major fouling of the FO membrane in OsMFCs.

The growth of biofouling layer on the FO membrane can be divided into three stages.

Microorganisms were the dominant biofoulant in the biofouling layer.

关键词: Microbial fuel cell     Forward osmosis     Membrane fouling     Biofouling     Wastewater treatment    

SOFC单电池测试方法

屠恒勇

《中国工程科学》 2013年 第15卷 第2期   页码 33-38

摘要:

固体氧化物燃料电池(SOFC)性能的测试结果能揭示材料和制备方法及其性能之间的复杂关系,确定燃料电池内部损耗的各种来源,并指导有关材料和制备技术的研发。在SOFC进入商业化发展的前期,测试方法的标准化有助于建立基础研究和开发研究间的有效和可靠联系,实现各研究机构所得测试结果的可比性,从而推动基础研究成果转化为现实的生产力。本文综述了国际上有关单电池标准测试系统的建立和步骤的制定以及测试结果报告的标准化,指出了在我国建立完善的SOFC发电技术标准体系的重要性和迫切性。

关键词: 固体氧化物燃料电池     性能测试     测试步骤     标准化    

Microfluidics for cell-cell interactions: A review

Rui Li,Xuefei Lv,Xingjian Zhang,Omer Saeed,Yulin Deng

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 90-98 doi: 10.1007/s11705-015-1550-2

摘要: Microfluidic chip has been applied in various biological fields owing to its low-consumption of reagents, high throughput, fluidic controllability and integrity. The well-designed microscale intermediary is also ideal for the study of cell biology. Particularly, microfluidic chip is helpful for better understanding cell-cell interactions. A general survey of recent publications would help to generalize the designs of the co-culture chips with different features. With ingenious and combinational utilization, the chips facilitate the implementation of some special co-culture models that are highly concerned in a different spatial and temporal way.

关键词: microfluidic chip     co-culture     cell-cell interactions     review    

Distinct mononuclear diploid cardiac subpopulation with minimal cellcell communications persists in

《医学前沿(英文)》   页码 939-956 doi: 10.1007/s11684-023-0987-9

摘要: A small proportion of mononuclear diploid cardiomyocytes (MNDCMs), with regeneration potential, could persist in adult mammalian heart. However, the heterogeneity of MNDCMs and changes during development remains to be illuminated. To this end, 12 645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing. Three cardiac developmental paths were identified: two switching to cardiomyocytes (CM) maturation with close CM–fibroblast (FB) communications and one maintaining MNDCM status with least CM–FB communications. Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs (non-pMNDCMs) with minimal cell–cell communications were identified in the third path. The non-pMNDCMs possessed distinct properties: the lowest mitochondrial metabolisms, the highest glycolysis, and high expression of Myl4 and Tnni1. Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4+Tnni1+ MNDCMs persisted in embryonic and adult hearts. These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data. In conclusion, a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled, highlighting the importance of microenvironment contribution to CM fate during maturation. These findings could improve the understanding of MNDCM heterogeneity and cardiac development, thus providing new clues for approaches to effective cardiac regeneration.

关键词: mononuclear diploid cardiomyocytes     cell–cell communication     cardiac fibroblast     single-cell RNA sequencing     cardiac regeneration    

Deubiquitinases as pivotal regulators of T cell functions

null

《医学前沿(英文)》 2018年 第12卷 第4期   页码 451-462 doi: 10.1007/s11684-018-0651-y

摘要:

T cells efficiently respond to foreign antigens to mediate immune responses against infections but are tolerant to self-tissues. Defect in T cell activation is associated with severe immune deficiencies, whereas aberrant T cell activation contributes to the pathogenesis of diverse autoimmune and inflammatory diseases. An emerging mechanism that regulates T cell activation and tolerance is ubiquitination, a reversible process of protein modification that is counter-regulated by ubiquitinating enzymes and deubiquitinases (DUBs). DUBs are isopeptidases that cleave polyubiquitin chains and remove ubiquitin from target proteins, thereby controlling the magnitude and duration of ubiquitin signaling. It is now well recognized that DUBs are crucial regulators of T cell responses and serve as potential therapeutic targets for manipulating immune responses in the treatment of immunological disorders and cancer. This review will discuss the recent progresses regarding the functions of DUBs in T cells.

关键词: deubiquitinase     ubiquitination     T cell activation     T cell differentiation     T cell tolerance    

Stem cell niches and endogenous electric fields in tissue repair

null

《医学前沿(英文)》 2011年 第5卷 第1期   页码 40-44 doi: 10.1007/s11684-011-0108-z

摘要:

Adult stem cells are responsible for homeostasis and repair of many tissues. Endogenous adult stem cells reside in certain regions of organs, known as the stem cell niche, which is recognized to have an important role in regulating tissue maintenance and repair. In wound healing and tissue repair, stem cells are mobilized and recruited to the site of wound, and participate in the repair process. Many regulatory factors are involved in the stem cell-based repair process, including stem cell niches and endogenous wound electric fields, which are present at wound tissues and proved to be important in guiding wound healing. Here we briefly review the role of stem cell niches and endogenous electric fields in tissue repair, and hypothesize that endogenous electric fields become part of stem cell niche in the wound site.

关键词: stem cell     stem cell niche     electric field     tissue repair    

CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies

《医学前沿(英文)》 2021年 第15卷 第6期   页码 783-804 doi: 10.1007/s11684-021-0904-z

摘要: The current standard of care in hematological malignancies has brought considerable clinical benefits to patients. However, important bottlenecks still limit optimal achievements following a current medical practice. The genetic complexity of the diseases and the heterogeneity of tumor clones cause difficulty in ensuring long-term efficacy of conventional treatments for most hematological disorders. Consequently, new treatment strategies are necessary to improve clinical outcomes. Chimeric antigen receptor T-cell (CAR T) immunotherapy opens a new path for targeted therapy of hematological malignancies. In this review, through a representative case study, we summarize the current experience of CAR T-cell therapy, the management of common side effects, the causative mechanisms of therapy resistance, and new strategies to improve the efficacy of CAR T-cell therapy.

关键词: CAR T cells     hematological malignancies     review    

标题 作者 时间 类型 操作

Cell surface protein engineering for high-performance whole-cell catalysts

Hajime Nakatani,Katsutoshi Hori

期刊论文

A performance analysis of integrated solid oxide fuel cell and heat recovery steam generator for IGFC

Souman RUDRA, H. T. KIM, Jinwook LEE, L. ROSENDAHL,

期刊论文

Performance comparison of cocurrent and countercurrent flow solid oxide fuel cells

Huisheng ZHANG, Shilie WENG, Ming SU

期刊论文

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

期刊论文

车用燃料电池电堆比功率提升的技术途径探讨

侯明,邵志刚,衣宝廉

期刊论文

Nitrogen-doped graphene approach to enhance the performance of a membraneless enzymatic biofuel cell

Alireza AHMADIAN YAZDI, Jie XU

期刊论文

Influence of using amorphous silicon stack as front heterojunction structure on performance of interdigitatedback contact-heterojunction solar cell (IBC-HJ)

Rui JIA,Ke TAO,Qiang LI,Xiaowan DAI,Hengchao SUN,Yun SUN,Zhi JIN,Xinyu LIU

期刊论文

Anion-exchange membrane direct ethanol fuel cells: Status and perspective

T.S. Zhao, Y.S. Li, S.Y. Shen

期刊论文

Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance

Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li

期刊论文

SOFC单电池测试方法

屠恒勇

期刊论文

Microfluidics for cell-cell interactions: A review

Rui Li,Xuefei Lv,Xingjian Zhang,Omer Saeed,Yulin Deng

期刊论文

Distinct mononuclear diploid cardiac subpopulation with minimal cellcell communications persists in

期刊论文

Deubiquitinases as pivotal regulators of T cell functions

null

期刊论文

Stem cell niches and endogenous electric fields in tissue repair

null

期刊论文

CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies

期刊论文